

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : STLD(19EC401)

Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & II-Sem

<u>UNIT –I</u>

BINARY SYSTEMS

1. Explain about Logic gates. with symbols and truth tables.	L1, CO.1,[12M]
 2. Perform the following a) Subtraction by using 1's complement for the given 10101 - 11011. b) Subtraction by using 2's complement for the given 111001-1010. 	L3, CO.1,[6M] L3, CO.1,[6M]
 3. a) Convert the following numbers to Decimal and then to Octal. (i) (423416 (ii)(10010011)₂. b) Convert the following to Decimal and then to Hexadecimal. (i) (1234)₈ (L1, CO.1,[6M]
 4. Simplify the following Boolean expression: (a) F = (A+B)(A'+C)(B+C). (b) F = XY+XYZ+XYZ'+X'YZ 	L1, CO.1,[6M] L3, CO.2,[6M] L3, CO.2,[6M]
5. Explain Different Types of binary codes and give there examples	L3, CO.1,[12M]
 6. Convert the following to Decimal and then to Octal. (a) 1234₁₆ (b) 12EF₁₆ (c) 10110011₂ (d) 10001111₂ (e) 7. Express the function Y=A+B'C in (i)Canonical SOP form (ii) Canonical PO 	L1,CO.1,[12M] e) 352 ₁₀ S form
8 a) Simplify the following Boolean functions to minimum number of literals (i) $xyz + x'y + xyz'$. (ii) $xz + x'yz$.	L3,CO.2,[12M] L3, CO.2,[6M]
b) Simplify the following Boolean functions to minimum number of literals: F = ABC + ABC' + A'B	L3, CO.2,[6M]
9. A receiver with even parity hamming code is received the data as 1110110.D correct code.	etermine the L3,CO.2,[12M]
10.What is Grey code? What are the rules to construct gray code? Develop the 4 The decimal 0 to 15.	bit gray code for L1, CO.1,[12M]

Course Code: 19EC0401

<u>UNIT –II</u>

GATE-LEVELMINIMIZATION				
1.	Minimize the following Boolean function using K-Map.	L2, CO.3,[12M]		
	$F(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8, 10, 12, 14).$			
2.	Minimize the given Boolean function $F(A,B,C,D) = \Sigma m(2,3,5,7,8,10,12,13)$ using tabulation			
	method.	L2, CO.3,[12M]		
3.	S. Simplify the following Boolean expressions using K-map and Implement the same using Logic			
	gates. $F(W,X,Y,Z) = XZ + W'XY' + WXY + W'YZ + WY'Z$	L3, CO.3,[12M]		
4.	Simplify the following Boolean expressions using K-map.	L3, CO.3,[12M]		
	$F(A, B, C, D) = \Sigma m(5,6,7,12,13) + \Sigma d(4,9,14,15)$			
5.	a) Simplify the following expression using the K-map for the 3-variable.	L3, CO.3,[6M]		
	Y = AB'C + A'BC + A'B'C + A'B'C' + AB'C'			
	b) Simplify the following Boolean expressions using K-map.			
	$F(A, B, C, D) = \Sigma m(1,3,7,11,15) + \Sigma d(0,2,5)$	L3, CO.3,[6M]		
6.	Minimize the given Boolean function $F(A,B,C,D) = \Sigma m(0,2,3,6,7,8,10,12,13)$	e e		
7	method.	L2, CO.3,[12M]		
7.	7. What are the universal gates? Implement logic gates by using NAND and NOR gates.			
0	Simulify the following Declean evenessions using K mon	L2, CO.3,[12M]		
8.	Simplify the following Boolean expressions using K-map.	L3, CO.3,[12M]		
0	$F(A, B, C, D) = \pi M(0,2,3,8,9,12,13,15)$			
9.	Simplify the following Boolean expressions using K-map.	L3, CO.3,[12M]		
	$F(A, B, C, D,E) = \Sigma m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$			
10.	Simplify the following Boolean expressions using K-map.	L3, CO.3,[12M]		
	$F(A, B, C, D,E) = \Sigma m(0,5,6,8,9,10,11,16,20,24,25,26,27,29,31)$			

Page 2

<u>UNIT –III</u>

COMBINATIONAL LOGIC

 Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux. What is combinational logic circuit? Give the analysis procedure for combination 	L5 CO.4,[12M]
 Design & implement Half Adder and Full Adder with truth table. Design & implement Half Subtractor and Full Subtractor with truth table. What is magnitude comparator? Design 2-bit comparator by using logic gates. What is parallel adder? Design and explain 4 bit parallel adder by using full adder 	L5 CO.4,[12M] L3 CO.4,[12M] L3 CO.4,[12M] L1,CO.4,[12M]
o. What is parallel addel : Design and explain 4 of parallel addel by using full add	L3, CO.4,[12M]
7.What is Decoder? Design the circuit for 3to 8 decoder with truth table.	L1,CO.4,[12M]
8. What is Encoder? Design the circuit for Octal to Binary encoder with truth table	e. L1,CO.4,[12M]
9. Design 32 to1 multiplexer using 8 to 1 multiplexers and 2to4 Decoder.	L1,CO.4,[12M]
10.What is Demultiplexer? Desingn1:8 Demultiplexer using 1:4 Demultiplexers.	L1,CO.4,[12M]

UNIT-IV SYNCHRONOUS SEQUENTIAL LOGIC

1. a) Dra	1. a) Draw the logic diagram for D Flip Flop by using SR Flip Flop Explain the operation with		
truth t	able.		L1, CO.4[7M]
b) W	rite the differences between combinational an	d sequential circuits.	L2, CO.4[5M]
2. a) H	Explain working of Master Slave Flip flop wit	h neat diagram.	L1, CO.4,[6M]
b)I	b)Draw the logic diagram T Flip Flop by using JK Flip Flop and draw the timing diagram.		
			L1, CO.2,[6M]
3. Draw	the circuit of JK flip flop using NAND gates	and explain its operation.	L3,CO.4,[12M]
4. What is SR latch? Explain the operation for different cases By using Truth table.			
			L1,CO.4,[12M]
5. What	is Register Explain i) Parallel in Parallel out	Register	L3,CO.4,[12M]
ii) Series in Parallel out Register			
6. Design and implement 3-bit ripple counter using J-K flip flop. Draw the state diagram, logic			
diagra	m and timing diagram for the same.		L3,CO.4,[12M]
7. With a	a neat sketch explain 4 bit Johnson counter us	ing D FF.	L3,CO.4,[12M]
8. Implement 4-bit ring counter using suitable shift register. Briefly describe its operation.			
			L3,CO.4,[12M]
9. a) E	xplain about level and Edge triggering .		L1,CO.4,[6M]
b)Ez	xplain the operation of series in series out regi	ister.	L1, CO.4,[6M]
10. Desig	gn MOD-10 Asynchronous counter by using T	ſ-Flip flop	L3, CO.4,[12M]

<u>UNIT – V</u> FINITE STATE MACHINES AND PROGRAMMABLE LOGIC DEVICES

 Explain about Mealy and Moore Models of sequential machines. Implement the following Boolean function using PAL. (i)W(A,B,C,D) = Σm(0,2,6,7,8,9,12,13) (ii)X(A,B,C,D) = Σm(0,2,6,7,8,9,12,13) (iii)X(A,B,C,D) = Σm(0,2,6,7,8,9,12,13) (iv)Z(A,B,C,D) = Σm(1,3,4,6,9) 	· · · · · · · · · · · · · · · · · · ·
3. What is design procedure for FSM? Give the advantages of FSM.	L3, CO.5,[12M]
4. Implement PLA circuit for the following functions $F1(A,B,C) = \Sigma m(3,5,C)$	
$F2(A,B,C) = \Sigma m(0,2,4,7).$	L3, CO.6,[12M]
 Given the 8-bit data word 01011011,generate the 12-bit composite word for th corrects and detects single errors. 	L1, CO.6,[12M]
6. Explain the following related to sequential circuits.a)State diagram.b) State table.	
c) State assignment.	L2, CO.6,[12M]
7. What is ROM organization? Explain about Different types of ROM.	L3, CO.6,[12M]
8. Compare three combinational circuits: PLA, PAL and PROM.	L3, CO.6,[12M]
9.a) What is FSM? Give the applications of FSM.	L3, CO.5,[6M]
b) Explain about Memory decoding.	L3, CO.6,[6M]
10.What is RAM organization? Explain about Different types of RAM.	L3, CO.6,[12M]

PREPARED BY: B RAMESH