SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : STLD(19EC401)
Course \& Branch: B.Tech - EEE
Year \& Sem: II-B.Tech \& II-Sem

UNIT - I

BINARY SYSTEMS

1. Explain about Logic gates. with symbols and truth tables.

L1, CO.1,[12M]
2. Perform the following
a) Subtraction by using 1's complement for the given 10101-11011.

L3, CO.1,[6M]
b) Subtraction by using 2's complement for the given 111001-1010.

L3, CO.1,[6M]
3. a) Convert the following numbers to Decimal and then to Octal. (i) $(423416)_{10}$ (ii) $(10010011)_{2}$.

L1, CO.1,[6M]
b) Convert the following to Decimal and then to Hexadecimal. (i) (1234)8 (ii) $(11001111)_{2}$

L1, CO.1,[6M]
4. Simplify the following Boolean expression:
(a) $\mathrm{F}=(\mathrm{A}+\mathrm{B})\left(\mathrm{A}^{\prime}+\mathrm{C}\right)(\mathrm{B}+\mathrm{C})$.
L3, CO.2,[6M]
(b) $\mathrm{F}=\mathrm{XY}+\mathrm{XYZ}+X \mathrm{YZ}^{\prime}+\mathrm{X}^{\prime} \mathrm{YZ}$
L3, CO.2,[6M]
5. Explain Different Types of binary codes and give there examples
6. Convert the following to Decimal and then to Octal.

L3, CO.1,[12M]
(a) 1234_{16}
(b) $12 \mathrm{EF}_{16}$
(c) 10110011_{2}
(d) 10001111_{2}
(e) 352_{10}
7. Express the function $\mathrm{Y}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in (i)Canonical SOP form (ii) Canonical POS form

8 a) Simplify the following Boolean functions to minimum number of literals
L3, CO.2,[6M]
(i) $x y z+x \prime y+x y z$ '.
(ii) $x z+x$ ' $y z$.
b) Simplify the following Boolean functions to minimum number of literals:

L3, CO.2,[6M]

$$
\mathrm{F}=\mathrm{ABC}+\mathrm{ABC}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}
$$

9. A receiver with even parity hamming code is received the data as 1110110.Determine the correct code.

L3,CO.2,[12M]
10. What is Grey code? What are the rules to construct gray code? Develop the 4 bit gray code for The decimal 0 to 15 .

L1, CO.1,[12M]

UNIT -II

GATE-LEVELMINIMIZATION

1. Minimize the following Boolean function using K-Map.

L2, CO.3,[12M]

$$
F(A, B, C, D)=\Sigma m(0,2,4,6,8,10,12,14) .
$$

2. Minimize the given Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,5,7,8,10,12,13)$ using tabulation method.

L2, CO.3,[12M]
3. Simplify the following Boolean expressions using K-map and Implement the same using Logic gates.
$F(W, X, Y, Z)=X Z+W^{\prime} X Y^{\prime}+W X Y+W^{\prime} Y Z+W Y^{\prime} Z$
L3, CO.3,[12M]
4. Simplify the following Boolean expressions using K-map.

L3, CO.3,[12M]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(5,6,7,12,13)+\Sigma \mathrm{d}(4,9,14,15)$
5. a) Simplify the following expression using the K-map for the 3-variable.

L3, CO.3,[6M]
$\mathrm{Y}=\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
b) Simplify the following Boolean expressions using K-map.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,7,11,15)+\Sigma \mathrm{d}(0,2,5)
$$

L3, CO.3,[6M]
6. Minimize the given Boolean function $F(A, B, C, D)=\Sigma m(0,2,3,6,7,8,10,12,13)$ using tabulation method.

L2, CO.3,[12M]
7. What are the universal gates? Implement logic gates by using NAND and NOR gates.

L2, CO.3,[12M]
8. Simplify the following Boolean expressions using K-map.
$\mathrm{L3}, \mathrm{CO} .3,[12 \mathrm{M}]$
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,2,3,8,9,12,13,15)$
9. Simplify the following Boolean expressions using K-map.

L3, CO.3,[12M]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$
10. Simplify the following Boolean expressions using K-map. L3, CO.3,[12M]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,5,6,8,9,10,11,16,20,24,25,26,27,29,31)$

UNIT -III

COMBINATIONAL LOGIC

1 Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux.
L5 CO.4,[12M]
2 What is combinational logic circuit? Give the analysis procedure for combinational logic circuit.
L5 CO.4,[12M]
3. Design \& implement Half Adder and Full Adder with truth table.

L3 C0.4,[12M]
4. Design \& implement Half Subtractor and Full Subtractor with truth table.

L3 CO.4,[12M]
5.What is magnitude comparator? Design 2-bit comparator by using logic gates.

L1,CO.4,[12M]
6. What is parallel adder? Design and explain 4 bit parallel adder by using full adder.

L3, CO.4,[12M]
7.What is Decoder? Design the circuit for 3to 8 decoder with truth table.

L1,CO.4,[12M]
8. What is Encoder? Design the circuit for Octal to Binary encoder with truth table. L1,CO.4,[12M]
9. Design 32 to 1 multiplexer using 8 to 1 multiplexers and 2 to 4 Decoder.

L1,CO.4,[12M]
10.What is Demultiplexer? Desingn1:8 Demultiplexer using 1:4 Demultiplexers.

UNIT-IV

SYNCHRONOUS SEQUENTIAL LOGIC

1. a) Draw the logic diagram for D Flip Flop by using SR Flip Flop Explain the operation with truth table.

L1, CO.4[7M]
b) Write the differences between combinational and sequential circuits.
2. a) Explain working of Master Slave Flip flop with neat diagram.
b)Draw the logic diagram T Flip Flop by using JK Flip Flop and draw the timing diagram.

L1, CO.2,[6M]
3. Draw the circuit of JK flip flop using NAND gates and explain its operation.

L3,CO.4,[12M]
4. What is SR latch? Explain the operation for different cases By using Truth table.

L1,CO.4,[12M]
5. What is Register Explain i) Parallel in Parallel out Register

L3,CO.4,[12M]
ii) Series in Parallel out Register
6. Design and implement 3-bit ripple counter using J-K flip flop. Draw the state diagram, logic diagram and timing diagram for the same.

L3,CO.4,[12M]
7. With a neat sketch explain 4 bit Johnson counter using D FF.
8. Implement 4-bit ring counter using suitable shift register. Briefly describe its operation.

L3,CO.4,[12M]
9. a) Explain about level and Edge triggering .
b)Explain the operation of series in series out register.

L1, CO.4,[6M]
10. Design MOD-10 Asynchronous counter by using T-Flip flop

L3, CO.4,[12M]

UNIT - V
 FINITE STATE MACHINES AND PROGRAMMABLE LOGIC DEVICES

1. Explain about Mealy and Moore Models of sequential machines.

L3, CO.5,[12M]
2. Implement the following Boolean function using PAL.

L3, CO.6,[12M]
(i) $\mathrm{W}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13)(\mathrm{ii}) \mathrm{X}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13,14)$
(iii) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,8,9,10,12,13)(\mathrm{iv}) \mathrm{Z}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,4,6,9,12,14)$
3. What is design procedure for FSM? Give the advantages of FSM.

L3, CO.5,[12M]
4. Implement PLA circuit for the following functions $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(3,5,6,7)$,

F2(A,B,C) $=\Sigma \mathrm{m}(0,2,4,7)$.
L3, CO.6,[12M]
5. Given the 8 -bit data word 01011011 ,generate the 12 -bit composite word for the hamming code that corrects and detects single errors.

L1, CO.6,[12M]
6. Explain the following related to sequential circuits.
a)State diagram.
b) State table.
c) State assignment.

L2, CO.6,[12M]
7. What is ROM organization? Explain about Different types of ROM.

L3, CO.6,[12M]
8. Compare three combinational circuits: PLA, PAL and PROM.

L3, CO.6,[12M]
9.a) What is FSM? Give the applications of FSM. L3, CO.5,[6M]
b) Explain about Memory decoding.

L3, CO.6,[6M]
10.What is RAM organization? Explain about Different types of RAM.

L3, CO.6,[12M]

PREPARED BY: B RAMESH

